Effect of the dimensionality in spin- and superconducting-fluctuations

Y. Fuseya and M. Ogata

Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo 113-0033, Japan.

The behavior of the spin- and superconducting-fluctuations against the dimensionality effect (interchain hopping t_{\perp}) is investigated for quasi-one-dimensional (Q1D) electron systems. The response functions for the spin density wave (SDW) and the *d*-wave singlet superconductivity (*d*SS) are calculated by the newly developed renormalization group (RG) technique, *N*-chain RG[1].

The response function for SDW, χ_{SDW} , is enhanced by t_{\perp} , but saturated below the energy scale of the imperfection of the nesting $t_{\perp 2}$ (the dash-dotted line of Fig. 1). On the other hand, the response function for dSS, χ_{dSC} , is affected hardly by $t_{\perp 2}$, though it is also enhanced by t_{\perp} . Consequently, χ_{dSS} can keep increasing by pressure P, even if χ_{SDW} is saturated below $t_{\perp 2}$. (Here, t_{\perp} and $t_{\perp 2}$ are certain increasing function of P, e.g., $t_{\perp} \sim P$ and $t_{\perp 2} \sim P^2$.) This suggests that the transition temperature of the superconductivity can keep increasing by P even after SDW phase is destroyed.

[1] Y. Fuseya et al, cond-mat/0606795.

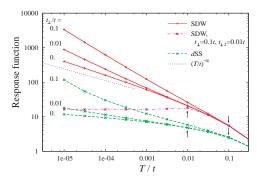


FIG.1: Response functions for the SDW (solid lines) and the *d*SS (dashed lines) with U/t = 3.0, $t_{\perp}/t = 0.001$, 0.1. The case of the nesting deviation $(t_{\perp 2}/t=0.01)$ is also indicated by the dash-dotted line.