Pressure effect on NiS₂

-Mott critical point and quantum critical point-

S. Takashima, ¹ N. Takeshita, ² C. Terakura, ² M. Nohara, ¹ and H. Takagi^{1,2}

¹Department of Advanced Materials, University of Tokyo, Kashiwa 277-8561 ²Correlated Electron Research Center (CERC),

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562

The first order Mott transition is analogous to the gas-liquid transition of molecular fluid, which obeys the Ising universality class near the critical point. This analogy has been confirmed by high pressure study on Cr-doped $V_2O_3^{[1]}$, for which the Mott transition line terminates at the high critical temperature of $T_c \sim 450$ K.

Recently, however, peculiar critical exponents have been reported on the organic Mott system^[2]. The relatively low critical temperature of $T_{\rm c} \sim 40$ K invokes effects of quantum fluctuation on the Mott criticality^[3].

In this study, we determined the electronic phase diagram of $NiS_{2-x}Se_x$ as shown in Fig. 1. We found that the Mott critical temperature T_c could be tuned by the Se contents x; $(P_c, T_c) \sim (3.4 \text{ GPa}, 210 \text{ K})$ for x = 0 and $(P_c, T_c) \sim (1.5 \text{ GPa}, 110 \text{ K})$ for x = 0.3. The critical temperature T_c for $NiS_{2-x}Se_x$ is in between the T_c for V_2O_3 and

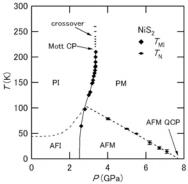


Fig.1 Electronic phase diagram of NiS₂.

the organic system. Thus, we expect that the inspection of critical exponents will elucidate the mechanisms of peculiar Mott criticality of the organic system.

- [1] P.Limelette et al., Science 302, 89 (2003).
- [2] F.Kagawa et al., Nature 436, 534 (2005).
- [3] M.Imada et al., Phys.Rev.B 72, 075113 (2006).