Spin Liquid Behavior and Anomalous Hall Effect of the Frustrated Kondo Lattice Pr₂Ir₂O₇

Y. Machida,¹ S. Nakatsuji,^{1,2} Y. Maeno,¹ T. Tayama,² and T. Sakakibara²

¹Department of Physics, Kyoto University, Kyoto 606-8502, Japan. ²Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan.

The pyrochlore magnet $Pr_2Ir_2O_7$ is a geometrically frustrated Kondo lattice. It exhibits no magnetic long-range order down to 80 mK despite of an antiferromagnetic RKKY interaction of $T^* = 20$ K between the <111> Ising-like Pr 4*f*-moments. Instead, Kondo effect emerges and leads to partial screening of the localized 4*f*-moments below T^* . In the susceptibility and specific heat, the underscreened 4*f*-moments show spin-liquid behavior below a renormalized energy scale of $\theta_W \sim 1.7$ K and $B_c \sim 1.0$ T [1].

Here, we report novel Hall transport phenomena observed in the spin liquid regime. Interestingly, the anomalous Hall coefficient R_s at the low field limit is found to increase *logarithmically* on cooling as shown in Fig. 1. In the same temperature region, the longitudinal resistivity ρ_{xx} has nearly no *T* dependence, and thus, the diverging behavior in R_s cannot be ascribed to the conventional mechanisms such as skew scattering and side jump processes. Furthermore, the field in-



FIG. 1: Temperature dependence of the anomalous Hall coefficient R_s and the longitudinal resistivity ρ_{xx} under a magnetic field of 0.3 T along the [111] direction of Pr₂Ir₂O₇.

duced crossover of the Pr spin state around B_c dramatically changes the field dependence of the Hall resistivity ρ_{xy} . This suggests that the short-range non-collinear spin texture of the Pr-moments including spin-chirality plays an important role for the low temperature divergence of ρ_{xy} .

[1] S. Nakatsuji, Yo Machida et al., Phys. Rev. Lett. 96, 087204 (2006)