Spin Disordered States of the frustrated magnets NiGa₂S₄ and Pr₂Ir₂O₇

S. Nakatsuji^{1,2}, Y. Machida², Y. Nambu², K. Onuma², Y. Maeno², T. Tayama¹, T. Sakakibara¹, S. Jonas³, C. Stock³, J. van Duijn³, and C. Broholm³

¹ Institute for Solid State Physics, Univ. of Tokyo, Kashiwa, Chiba 277-8581, Japan ² Dept. of Physics, Kyoto Univ., Kyoto 606-8502, Japan ³ Dept. of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA

We first present the novel spin disordered states found in NiGa₂S₄, a rare example of 2D triangular lattice antiferromagnets. Despite antiferromagnetic (AF) interactions (80 K), no long-range AF order has been observed down to 0.35 K. We instead find nano-scale quasi-static correlation between S = 1spins that develops below 10 K. Double peak formation of the specific heat on cooling (Fig.1) and its low- TT^2 dependence suggests that coherent propagation of the gapless mode in the low temperature spin liquid or frozen state. Then, we briefly introduce the pyrochlore type Kondo lattice Pr₂Ir₂O₇ that exhibits a metallic spin liquid behavior. In the spin-liquid-like regime below 2 K, we observed the logarithmically diverging Hall conductivity, which comes from the frustrated non-coplanar spin configuration.

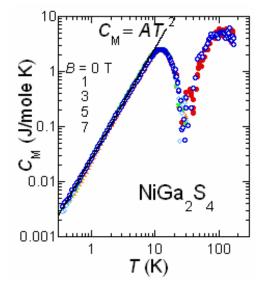


Fig. 1 Magnetic specific heat of NiGa₂S₄