Mott and Magnetic Criticality in NiS₂

M. Nohara,¹ S. Takashima,¹ N. Takeshita,² C. Terakura,² and H. Takagi^{1,2}

¹Department of Advanced Materials, University of Tokyo, Kashiwa 277-8561 ²Correlated Electron Research Center (CERC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562

Electrical resistivity of NiS₂ and NiS_{1.7}Se_{0.3} was measured under high pressure and the electronic phase diagram was determined as shown in Fig. 1. The first order Mott transition line terminates at the critical point (CP) of (P_c , T_c) = (3.4 GPa, 210 K) for the pure NiS₂. The Mott CP was reduced down to (1.5 GPa, 110 K) for Ni S_{1.7}Se_{0.3}. The reduction in T_c is most likely due to disorder induced by the Se substitution, while the reduction in P_c is ascribed to the chemical pressure. By applying higher

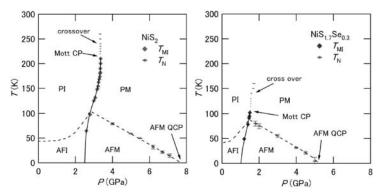


Fig. 1. Electronic phase diagram for NiS₂ and NiS_{1.7}Se_{0.3}.

pressure, we approached the magnetic quantum critical point (QCP), at which the antiferromagnetic metallic (AFM) phase vanishes. Resistivity exhibits a $T^{1.5}$ behavior at the QCP for both NiS₂ and NiS_{1.7}Se_{0.3}, indicating the criticality of the QCP is insensitive to the disorder.