Ultrasound Study of Nuclear Ordered Solid Helium 3

S. Sasaki,^{1*} A. Nakayama,¹ T. Yasui,¹ Y. Sasaki,^{1,2} and T. Mizusaki¹

¹Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan. ²Research Center for Low Temp. and Materials Sciences, Kyoto University, Kyoto 606-8502, Japan.

Nuclear magnetism of solid ³He provided an extensive guide line to the concept of multiple spin ring exchange (MSE), which is becoming a common concept among highly correlated many body systems. At the ultra low temperature below about 1mK, there are two nuclear spin ordered phases: the low field U2D2 phase and the high field CNAF phase, which exists above $B_{c1}(T) \approx 0.45$ T. It is beleaved that the concept of the MSE is necessary to understand these two nuclear antiferromagnet. The exchange constants, *J*, depend strongly on molar volume, *V*, as $J \propto V^{20}$. Therefore studying acoustic properties of solid ³He provides good information in understanding the MSE.

We measured the temperature and magnetic field dependences of sound velocities, v(T, B), in both phases with a single magnetic domain crystal at the melting pressure. Through the analysis on $\Delta v(T, B) = v(T, B) - v(0, 0)$ for various sound propagation directions, we obtained six independent components of the temperature dependent nuclear spin elastic stiffness tensor $\Delta c_{ij}^{U}(T, B = 0.06 \text{ T})$ and the field dependent one $\Delta c_{ij}^{U}(T = 0.5 \text{ mK}, B)$ for the U2D2 phase, which has tetragonal symmetry. In the CNAF phase with cubic symmetry, we determined three independent components of $\Delta c_{ij}^{C}(T, B = 0.50 \text{ T})$, and $\Delta c_{ij}^{C}(T = 0.5 \text{ mK}, B)$. From these Δc_{ij} , we obtained the generalized Grüneisen constants, $\Gamma_{ij}^{X} (\equiv \partial^2 \ln X/\partial \varepsilon_i \partial \varepsilon_j)$, where ε_i is a strain and X denotes a physical quantity such as the spin wave velocity c or the inverse susceptibility $1/\chi$. The obtained Γ_{ij}^{c} and $\Gamma_{ij}^{1/\chi}$ are compared with the theoretical constraint, which is derived from the three parameter MSE model. Using this comparison, the quantitative validity of the model is discussed.

*Present address: Laboratoire de Physique Statistique de l'ENS, 24 rue Lhomond, 75231 Paris, France